Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2345, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138802

RESUMO

Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths' macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage.

2.
Chem Commun (Camb) ; 52(18): 3639-42, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26845644

RESUMO

The gate-opening phenomenon in ZIFs is of paramount importance to understand their behavior in industrial molecular separations. Here we show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N2 pressure.

3.
Dalton Trans ; 44(43): 18970-82, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26470625

RESUMO

A computational and experimental screening of hypothetical and real compounds exhibiting different degrees of ethylenediamine grafted to the CPO-27-Mg or Mg-DOBDC skeleton is performed in order to determine the target composition that optimizes the CO2 adsorption properties under flue gas and air filtering conditions. On the basis of the [Mg2(dobdc)] formula, eighteen hypothetical models involving 15-100% of functionalization of the coordinatively unsaturated sites (CUS) were considered by means of Grand Canonical Monte Carlo simulations to evaluate the CO2 adsorption at 298 K. In addition, post-synthesis modification was applied to CPO-27-Mg leading to three kinds of samples exhibiting 15, 50, and 60% of CUS functionalization with ethylenediamine, named CPO-27-Mg-a, CPO-27-Mg-b and CPO-27-Mg-c. Compounds were characterized using elemental analysis, TGA, FTIR spectroscopy, PXRD and DSC. Finally, bare and functionalized CPO-27-Mg materials were evaluated using gas adsorption and microcalorimetry in the 0.001-1 bar range, which is pertinent for the mentioned applications. Valuable information related to design criteria for synthesis of tuned CO2 adsorbents is derived through this computational and experimental investigation.

4.
Chem Commun (Camb) ; 51(19): 4032-5, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25659832

RESUMO

We demonstrate a mechanochemical strategy that allowed the first successful mechanosynthesis of IRMOFs based on an oxo-centred secondary building unit (SBU). The presented study indicates that controlling the acid-base relationship between reagents is key to mechanochemical synthesis of IRMOFs, revealing a pre-assembled oxo-zinc amidate cluster as an efficient precursor for IRMOF mechanosynthesis.

5.
J Am Chem Soc ; 133(23): 8900-2, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21553843

RESUMO

ZIF-8 is a zeolitic imidazole-based metal-organic framework with large cavities interconnected by narrow windows. Because the small size of the windows, it allows in principle for molecular sieving of gases such as H(2) and CH(4). However, the unexpected adsorption of large molecules on ZIF-8 suggests the existence of structural flexibility. ZIF-8 flexibility is explored in this work combining different experimental techniques with molecular simulation. We show that the ZIF-8 structure is modified by gas adsorption uptake in the same way as it is at a very high pressure (i.e., 14,700 bar) due to a swing effect in the imidazolate linkers, giving access to the porosity. Tuning the flexibility, and so the opening of the small windows, has a further impact on the design of advanced molecular sieving membrane materials for gas separation, adjusting the access of fluids to the porous network.

6.
Langmuir ; 24(6): 2820-5, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18257593

RESUMO

Different carbon aerogels were obtained by carbonization of organic aerogels prepared from the polymerization of resorcinol and formaldehyde using potassium carbonate as catalyst. Various solvents were added to the initial mixture to study their effects on the inter- and intra-primary-particle structure of the carbon aerogels. To carry out this study, various techniques were used, including high-resolution transmission and scanning electron microscopy, mercury porosimetry, mechanical tests, N2 and CO2 adsorption at -196 and 0 degrees C, respectively, and immersion calorimetry into benzene. Variation of the solvent used produced changes in the gelation time of the organic aerogels, which gave rise to variations in the inter- and intra-primary-particle structure of the carbon aerogels obtained. The monolith density of the carbon aerogels ranged from 0.37 to 0.87 g/cm3. Samples with a density higher than 0.61 g/cm3 had micropores and mesopores but no macropores. Macro- and mesoporosity had a monomodal pore size distribution. The elastic modulus showed a scaling relationship with density. In all samples studied, which had a mean micropore width of 0.62-1.06 nm, the surface area obtained by enthalpy of immersion into benzene yielded a realistic value of their total surface area.

7.
Langmuir ; 23(20): 10095-101, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17722942

RESUMO

Monolithic carbon aerogels were obtained by carbonization of organic aerogels prepared by polymerization of resorcinol and formaldehyde under different conditions. Some carbon aerogels obtained were further CO2-activated. Samples were characterized by gas adsorption, scanning electron microscopy, high-resolution transmission electron microscopy, and mechanical tests. Benzene, toluene and xylenes were adsorbed from dry air by using carbon bed columns, obtaining the breakthrough curves. There was no correlation between the amount adsorbed at the breakthrough point and the volume of micropores narrower than 0.7 nm. Conversely, a good linear relationship between the amount adsorbed at the breakthrough point and the total micropore volume up to a mean micropore width of around 1.05 nm was found. In addition, the height of the mass transfer zone decreased with the mean width of the total micropores up to a value of around 1.05-1.10 nm. One of the best adsorbents obtained showed the lowest height of the mass transfer zone and one of the highest amounts adsorbed at the breakthrough point, either per mass or volume unit. However, it had a lower elastic modulus and compressive strength than other monolithic carbon aerogels, although its compressive strength (3 MPa) was still high enough to use it in carbon bed columns. The sample with the best mechanical properties was a poorer adsorbent. Regeneration of the exhausted adsorbents allowed the recovery of the hydrocarbons adsorbed without any appreciable loss of adsorption capacity of the carbon bed.


Assuntos
Benzeno/química , Carbono/química , Géis , Tolueno/química , Xilenos/química , Adsorção , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...